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ABSTRACT 
Solutions calculated by Genetic Algorithms have come to surpass exact methods for solving various problems. The 

Rubik’s Cube optimization problem is one such area. In this work we present a different approach to solve the Rubik’s 

Cube with a low 
 
Number of moves by building upon the genetic algorithm approach. We provide a group theoretic analysis of the sub 

problem complexity induced by genetic algorithm approach, transitions and design a Genetic Algorithm from the 

ground up including detailed derivation of our custom Fitness functions. By using this genetic algorithm approach we 

can find optimized solution any problem, especially for NP-Hard problem we need to find a robust and optimized 
solution, Rubik’s Cube is also one of the such type of problem, Hence in this paper our focus is to carry various 

experiment by using Rubik’s Cube and to find the number of minimum moves in which we can solve this problem, 

The experiments will carry by using Rubik’s Cube physically or by simulation, After getting Optimized solution paper 

will talk about results and conclusion that whether we got an optimized solution for this problem or not. 

 

KEYWORDS: Basic Term Genetic Algorithm (GA). 

 

INTRODUCTION  
Rubik’s Cube is the puzzle developed by the 

professor  
Erno Rubik, Standard version consists of 3*3*3 cube 
with having different color stickers on exposed sub 
cubes any 3*3*1 plane can be twisted or rotated in 
90,180,270 degrees related to rest of the cube, and our 
goal is to have all the squares on the each side are of 
the same color. 
 
A corner cube shows 3 facelets, an edge 2 and a center 
1. Each side of the  
Cube can be rotated clockwise (CW) and 
counterclockwise (CCW). Each single move changes 
the position of 4 edges and 4 corners. The center 
facelets remain fixed in position. They determined 
their face’s color. For each edge and corner we 
distinguish between position and orientation: i.e. an 
edge can be in its right position (defined by the two 
adjacent center colors) but in the wrong orientation 
(flipped). There are several known notations for 
applying single moves on the Rubik’s Cube. We will 
use F, R, U, B, L, D to denote a clockwise quarter-turn 
of the front, Right, up, back, left, down face and Fi, 
Ri, Ui, Bi, Li, Di for a counterclockwise Quarter-turn. 
Every such turn is a single move. In Cube related 
research, half turns (F2, R2, U2, B2, L2, and D2) are 
also counted as single moves. This notation is 
independent of colors but depends on the viewpoint. 
A sequence of moves, an Operation is created by 
concatenating single moves and is called operation 

(i.e. FRBiL2). 
 

 
 
A corner cube shows 3 facelets, an edge 2 and a center 
1. Each side of the Cube can be rotated clockwise 
(CW) and counterclockwise (CCW). Each single 
move changes the position of 4 edges and 4 corners. 
The center facelets remain fixed in position. They 
determined their face’s color. For each edge and 
corner we distinguish between position and 
orientation: i.e. an edge can be in its right position 
(defined by the two adjacent center colors) but in the 
wrong orientation (flipped). There are several known 
notations for applying single moves on the Rubik’s 
Cube. We will use F, R, U, B, L, D to denote a 
clockwise quarter-turn of the front, Right, up, back, 
left, down face and Fi, Ri, Ui, Bi, Li, Di for a 
counterclockwise Quarter-turn. Every such turn is a 
single move. In Cube related research, half turns (F2, 
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R2, U2, B2, L2, D2) are also counted as single moves. 
This notation is independent of colors but depends on 
the viewpoint. A sequence of moves, an Operation is 
created by concatenating single moves and is called 
operation (i.e. FRBiL2)[1]. 

 

GENETIC ALGORITHM  
Puzzle can be scrambled by making random number 

of twists and to solve this puzzle there are various 

algorithm available, focus of this paper is to solve this 

puzzle within a polynomial time with the help of 

Genetic Algorithm. Genetic Algorithm finds the good 

and robust solution for any problem including NP-

Hard problems. We can solve classical problem of 

Algorithm like Travelling Salesman problem that is 

Minimum Spanning tree problem, Knapsack problem. 
 
We will solve the Rubik’s Cube by using genetic 
algorithm. Genetic algorithm used to find the optimal 
solution for the problem[2]. Genetic algorithm works 
on the principle of Darwin’s theory:  
1) Survival of the fittest selection is the population 
improvement or the survival of the fittest that is 
Structures with the highest finesses deletes the 
Structures with the lower finesses.  
 
2) Crossovers results in good component with the 
good structures combining to reproduce even better 
structures than them that is crossovers recombine the 
different chromosomes from different genomes.   
3) Mutation which creates new structures those are 
similar to current structure.  

 
How to make decision based on genetic algorithm? 
We will see with the help of pseudo code & flow 
chart 
 

PSEUDO CODE: 
 

Algorithm for GA is 

 

// start with an initial 

time t := 0; 

 

// initialize a usually random population of 

individuals  

 

Initial population f (t);  

 

// evaluate fitness of all initial individuals of 

population  

 

Evaluate f (t);  

 

// test for termination criterion (time, fitness, etc.) 

While not done do  

 

// increase the time counter 

t: = t + 1;  

 

// select a sub-population for offspring production 

f'(t):= select parents f (t);  

 

//recombine the "genes" of selected 

parents Recombine f' (t); 

 

// perturb the mated population 

stochastically Mutate f' (t); 

 

// evaluate its new 

fitness Evaluate f' 

(t); 

 

// select the survivors from actual 

fitness f(t) := survive f(t),f' (t); 

 

End GA. 
 

 

RELATED WORK 
To get more knowledge about genetic algorithm, I 
referred various papers [1][2], which talks about the 
solution of “0-1 knapsack problem” and “n-Queens 
problem”, The complexity of Dynamic approach is of 

the order of 0(n3) whereas the Greedy Method doesn't 
always converge to an optimum solution, so the 
solution for this problem is GA[1]. Genetic algorithm 

is applicable to wide range problems like an n-queens 
problem [2] also. In the absence of specialized 
solution for a particular problem, genetic algorithm 
would be efficient. 
 
There are several computational approaches for 
solving the Rubik’s Cube, the three most important 
being the work of Thistlethwaite, Kociemba and 
Rokicki Their advanced algorithms are based on group 
theory concepts and apply advanced concepts such as 
symmetry cancelation and dedicated traversal 
methods (E.g. Iterative Deep Searching, IDA). 
Thistlethwaite’s Algorithm (TWA) works by dividing 
the problem into 4 sub problems - specifically 
subgroups and subsequently solving those. By using 
precalculated lookup-tables, sequences are put 
together that move a Cube from one group into another 
until it is solved.  
Kociemba’s Algorithm takes the idea of dividing the 

problem into subgroups from Thistlethwaite, but 

reduces the number of needed subgroups to only 2[1]. 

This method uses an advanced implementation of 

IDA, generating small maps, calculating and 

removing symmetries from the search tree and tends 

to solve the Cube close to the shortest number of 

moves possible. Kociemba made his approach 

available in form of a program called Cube Explorer 

http://www.ijesrt.com/


[Kulkarni, 4(4): April, 2015]   ISSN: 2277-9655 

                                                                                                 Scientific Journal Impact Factor: 3.449 

   (ISRA), Impact Factor: 2.114 

http: // www.ijesrt.com                  © International Journal of Engineering Sciences & Research Technology 

[638] 

which can be found at. Rokicki realized that the initial 

parts of the pathways computed by Kociemba’s 

Algorithm are solutions to a large set of related 

configurations. He exploits this property by dividing 

the problem into 2 billion cosets, each containing 

around 20 billion related configurations. With this 

method he was able to push the upper bound to 200 

moves sufficing to solve the Cube from any initial 

scrambled configuration[3]. 

 

PROPOSED SYSTEM:  
The basic idea of the GA is to divide the problem of 
solving the Cube into four independent sub problems 
by using the following four nested groups:  
G0=<F,R,U,B,L,D>,G1=<F,U,B,D,R2,L2>,  
G2=<U,D,R2,L2,F2,B2>,G3=<F2,R2,U2,B2,L2,D2> 

,G4=I. Obviously, G0 = GC. The functional principle 

of Thistlethwaite’s Algorithm is to put the Cube into a 

state where it can be solved by only using moves from 

Gi which again has to be achieved by only using 

moves from Gi−1 for i = 1, . . . 4, thus named nested 

groups. 
 
Specifically, every stage of the algorithm is simply a 
lookup table showing a transition sequence for each 
element in the current coset space Gi+1\ Gi to the next 
one (i = i+1). These coset spaces, each describing a 
reduced form of the 33 
 
Rubik’s Cube puzzle, induce different kinds of 
constraints. This directly results in the total number of 
attainable states being reduced by using only moves 
from some subgroup Gi+1. The exact orders for each 
group are calculated as follows: 

 

G0  
|G0| = 4.33* 10^19 represents the order of the Cube 
Group. 
 

G1  
The first coset space G1\G0 contains all Cube states, 
where the edge orientation does not matter. This is due 
to the impossibility of flipping edge cubies when only 
using moves from G1. As there are 2^11 possible edge 
orientations,  
|G1\G0|=2^11=2048…… (1) 

 
The order of |G1| is 
|G1|≡|G0|÷|G1\G0|=2.11*10^16…….. 
(2) 

 

G2  
Using only moves from G2, no corner orientations 

can be altered (eliminating 37 states). Additionally, 

no edge cubies can be transported to or from the 

middle layer (eliminating 12! (8! ·4!) States). The 

coset space G2\G1 thus depicts a reduced puzzle of 

the order |G2\G1|=3^7*(12! ÷ (8! \4!))=1082565… 

(3) 

And  
|G2|≡|G1|÷|G2\G1|=1.95*10^10 ………. (4) 
 

 

G3  
Once in the coset space G3_G2, the Cube can be 
solved by only using moves from G3, here the edge 
cubies in the L,R layers cannot transfer to another 
layer (eliminating (8÷(4!·4!)) * 2 states) and corners 
are put into their correct orbits, eliminating (8! ÷ (4! 
·4!)) * 3 states). 

 
Thus, 

|G3\G2|= ((8! ÷ (4!*4!))^2)*2*3=29400………. (5) 

 
And  
|G3|≡|G2|÷|G3\G2|=6.63*10^5……… (6) 

 

G4  
As G4 represents the solved state - obviously |G4| = 1 

which means there exist a mere |G3| possible states for 

which a solution needs to be calculated to transfer 

from G4_G3 to solved state. Most essential to TWA 

are the groups G1, G2, G3 as G0 simply describing the 

Cube Group GC and G4 the solved state. To further 

exemplify how the coset spaces simplify the Rubik’s 
 
Cube puzzle the following may prove helpful. When 
looking at the constraints induced by G2\G1\G0 
carefully (combining the constraints induced by 
G2\G1 and G1\G2) it is essentially a Rubik’s Cube 
with only 3 colors - counting two opposing colors as 
one. This representation can be reached for each 
distinct coset space by examining and applying its 
effect to the complete Rubik’s Cube puzzle. 
 
While solving the Rubik’s Cube in a divide and 
conquer manner, breaking it down into smaller 
problems (by generating groups and coset spaces) is 
effective, there exists one major flaw. Final results 
obtained by concatenating shortest subgroup solution 
do not necessarily lead to the shortest solution, 
globally. 
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Basic Work-Flow of Genetic Algorithm for this 
Puzzle: 
 

 

   Initialization  

      

   Mutation phase  

   “i”  

     

   Fitness   

Selection  Calculation   

Pool  phase “i”   

      

      

   Selection   

      

     

Phase  

    

 

Solved Cube 

  

Transition 

    

     

      

 

FITNESS FUNCTION  
Translation phase which contains, the translation of 
our algorithm in to an appropriate fitness function is 
mandatory, Survival the fittest so the functions having 
large running time should be discarded[1]. 

 

Step1:  
Phase 0 → Phase 1  
to reach phase 1 from any scrambled Cube, we have 
to orient all edge pieces right while ignoring their 

position. The fitness function for this phase simply 
increases the variable phase0 by 2 for each wrong 
oriented edge. Furthermore, we add the number of 
moves that have already been applied to the particular 

individual in order to promote shorter solutions. 
Finally, we adjust the weight between w (number of 
wrong oriented edges) and c (number of moves 

applied to current Cube individual). This will be done 
similarly in all subsequent phases. 

 

phase0 = 5*(2w) + c………………. (7) 

 
With a total of 12 edges which can all have the wrong 
orientation this gives max {2w} = 24. The Cube has 
been successfully put into Phase1 when  phase0 = c. 

 
Reaching Phase1 is fairly easy to accomplish, thus 

making the weight-factor 5 a good choice. 

 

Step2:  
Phase1 → Phase2 In order to fulfill Phase 2 the 8 

corners have to be oriented correctly. Edges that 
belong in the middle layer get transferred there. Tests 

with the Classical solution showed it somewhat 
problematic to do this in one step. Oftentimes, the 

algorithm would get stuck in local optima. To solve 
this, the process of transferring a Cube from Phase1 to 

Phase2 has been divided into two parts. First, edges 
that belong into the middle layer are transferred there. 

Second, the corners are oriented the right way. The 

first part is fairly easy and the fitness function is 
similar to that from phase0 except for w (number of 

wrong positioned edges), i.e. edges that should be in 
the middle layer but are not. 

 
phase1 = 5* (2w) + c………………….. (8) 

 

In the second part, for each wrong positioned corner, 
4 penalty points are assigned as they are more complex 
to correct than edges. Obviously, in order to put the 
Cube from G1 to G2 both phases described here have 
to be fulfilled, which yields: 

 

phase2 = 10 * (4v) + phase1 ……………….(9) 

 

Where v represents the number of wrong oriented 
corners. The weighing factor is increased from 5 to 10 
to promote a successful transformation into G2 over a 
short sequence of moves. 

 

Step3:  
Phase2 → Phase3 We now have to put the remaining 
8 edges in their correct orbit. The same is done for the 
8 corners which also need to be aligned the right way. 
Thus, the colors of two adjacent corners in one circuit 
have to match on two faces. In G3 the Cube will only 
have opposite colors on each face. Let x (number of 
wrong colored facelets) and y (number of wrong 
aligned corners), then 

 
phase3 = 5* (x + 2 *y) + c………………….. (10) 
 
Step4:  
Phase3 → Phase4 (solved) The Cube can now be 
solved by only using half-turns. For the fitness 
function we simply count wrong colored facelets. Let 
z be the number of wrong colored facelets, then 

phase4 = 5・ z + c………………………….. (11) 

 

To summarize, 5 different fitness functions are needed 
for the Genetic algorithm. Phase i is solved if phase i 
= c, i = 0, ..., 4 and with the properties of nested groups 
we can conclude, given the above, a solved Cube 
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implies:  
4  
Σ phase i = 
c i=0  
Fulfilling the above equation satisfies the constraints 
induced by the groups G0,….G4, with the final fitness 
value c describing the final solution sequence length. 
The weight factors chosen are based on consecutive 
testing throughout development. The ratio is dictated 
by the size of the nested groups. 
 
Finding optimal weights presents a separate 
optimization problem and may be subject to future 
work. 
 

MUTATION OPERATORS  
The mutation operators are dictated by the subgroups 
used[2]. Conveniently, the maximum sequence length  
(s) needed to transform the Cube from one subgroup 
to another is given by Thistlethwaite [13]. Those 
lengths are 7,13,15,17 (the sum of which is 52, 
hence”52 Move Strategy”) for each group transition 
respectively. An individual in phase i is mutated by:  
1. Generating a random length (l) with 0 ≤ l ≤ s, 
according to i (i = 0 → s = 7, i = 1 → s = 13, i = 2, 3 
→ s = 15, i = 4 → s = 17)   
2. Concatenating l random single moves from the 
according group Gi   
3. Applying this sequence to the current Cube 
individual  

 

For example: Let i = 2 (transitioning from G2 → G3). 
The maximum sequence length for this step is s = 15. 
Let random l = 4, (0 ≤ 4 ≤ 15). Next, we chose a 

random single move from G2, repeat this a total of 4 
times and concatenate these to form a sequence. Let 
those 4 single moves be D, F2, and R2, U. This results 
in the sequence D,F2,R2,U representing the present 

mutation which is applied to the current Cube 
individual. In case of l = 0 the mutation is an empty 
sequence, leaving the current individual untouched. 

Given an appropriate fitness, this allows distinct 
Cubes to survive multiple generations. 

 

OBSERVATIONS  
Observations are observed by using simulator named 
“Arcus”. With the help of this software we can 
simulate the Rubik’s cube,  
 
 
 
 
 
 
 
 
 

1) Initial Position:  

 
 
 
2) Final Solution by Classical 
Algorithm: Number of moves: 221  
As the numbers of moves are higher so the running 
time for the solution is high. 

 
 
3) Final solution by Genetic 
Algorithm: Number of moves: 107  
As the numbers of moves are higher so the running 
time for the solution is lower as compared to 
classical solution. 
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CONCLUSION  
It can be concluded that, genetic algorithm can provide 

optimal solution for the Rubik’s cube problem, as we 

have observed in above simulation results; the 

classical solution takes 227 moves to solve this cube, 

while by applying the genetic algorithm theory we can 

get the optimal solution in 107 moves, so this paper 

concludes that the genetic algorithm provides the 

efficient solution for this problem. 
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